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Brief description of near zone to far zone transformation2 

N2F is a C/C++ code used to calculate the far zone electromagnetic (EM) field, given E and H near zone 

field data. The method used by N2F can be found in Ref. 1 and 2.  N2F determines the far field E and E 

in spherical coordinates for near zone data calculated in either Cartesian or Cylindrical geometry.  

Using the methodology in Refs. 1 and 2, N2F calculates 

E = - W-U      (1) 

and 

E = - W+U      (2) 

where  is the free space impedance  

     = 0c          (3) 

with 0 = 4*x10-7
 (H/m) and c is the speed of light. 
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where     

𝐽𝑠(𝑡) = 𝑛̂  ×  𝐻(𝑡)  and  𝑀𝑠(𝑡) =  −𝑛̂ × 𝐸(𝑡)   (6) 

N2F calculates the retarded or time delay, at each near zone point in Cartesian coordinates where  

time delay = (𝑟̅′. 𝑟̂)/c      (7) 

                                                           
1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 

under Contract DE-AC52-07NA27344.  

2 In this document, words in italics are code variable names, bold are function names, bold underline are file names (either 

input or output)  and bold italics UNIX internal functions. 

 



This value is added to the input time for each near zone point to translate the J and M time arguments in 

Equations 4-5 to a global reference time grid with  (𝑟̅′. 𝑟̂)  the distance from the near zone point to the 

far zone point. In Equations 4-5 r̂  is the unit vector along the path to the far zone point, 'r is the vector 

to the center of the near zone cell to be integrated and S’ in Eq. 4-5 the surface area of integration. 

Typically, the 1/R term outside of the integrals is set to 1 and the constant R/c, representing a simple 

phase shift suppressed (see Ref 1 pp. 108-109). Figure 1 is a diagram of the Cartesian geometry used for 

the integrations in Equations 4-5. 

 

 

Figure 1. Diagram of the distance from a near zone point to the far zone point in Cartesian geometry. In 

Equations 4-5, r̂  is the unit vector along the path to the far zone point, 'r is the vector to the center of 

the near zone cell to be integrated. 

Brief Overview of Code Logic 

The user must supply the near zone locations together with the corresponding near zone E and H data, 

and set the input geometry flag.  For cylindrical geometry, Gz1.flt contains the bottom of the near zone 

cylinder geometry data in IEEE 32-bit floating point (x, y, z) triplets. Gz2.flt contains the near zone 

cylinder top geometry data using triplets while Gr1.flt contains the near zone cylinder side triplet 

geometry data. Fz1.flt, Fz2.flt and Fr1.flt contain the corresponding E and H t field data stored in groups 

of 7 IEEE 32-bit floating point data for each geometry point (t, Er, E, Ez, Hr, H, Hz). For Cartesian near 

zone data, Gx1.flt, Gx2.flt, Gy1.flt, Gy2.flt, Gz1.flt, and Gz2.flt contain the IEEE 32-bit floating point 

triplet near zone geometry data (x, y, z) for the –x, +x, -y, -y, -z, and +z surfaces respectively. The 

corresponding E and H field data using the 7 IEEE 32-bit floating point element grouping (t, Ex, Ey, Ez, Hx, 

Hy, Hz) are stored in the files Fx1.flt, Fx2.flt, Fy1.flt, Fy2.flt, Fz1.flt, and Fz2.flt respectively. N2F 

determines the size of the problem after calculating the total number of near zone points, including the 

additional  cylindrical coordinates multiplied by the number of time points. Depending upon the size of 

available memory and the total amount of data, either a large or small problem computational 

architecture is used. For small problems, the entire near zone data set is loaded into memory. For large 



problems, the near field E and H data is loaded into memory at each near zone point as needed, with a 

resulting slowing of the calculation. A warning message is sent when N2F determines that the size of the 

problem is large.  Different code logic is used based on the geometry flag (igeom = 0 for Cartesian and 1 

for cylindrical) and the size of the problem (imem = 0 for small and 1 for large). 

What N2F does is replace the integrals with sums assuming J and M are uniform in each cell area 

containing a near zone cell centered point. The near zone E and H data which are assumed to be 

calculated on near zone point nodes are translated to cell centered values, with the input near zone 

nodes located at the cell corners. In cylindrical geometry, the near zone data is collected on lines in (r, z) 

space. The  values are obtained by replicating the near zone geometry (r, z) and the near zone E and H 

field data assuming  symmetry. The near zone E and H data set is used, with   only influencing 

distance from the near zone point to the far zone point or the  time delay, the distance it takes an EM 

signal to travel from the near zone location (changing with ) to the desired far zone location. 

First N2F calculates all of the near zone cell areas and stores them in an array, converting from a 

geometry based on nodes to a grid where the data is cell centered. While this is straightforward in 

cylindrical geometry, for Cartesian geometry, near zone points on the edges and corners of the near 

zone data surface have different areas than those cell areas in the surface interior. N2F finds all of the 

near zone points that fall on either an edge or corner and prints the number of edge and corner points 

to the screen. N2F also prints the total area and the area of each surface to the screen. 

Having found the cell areas, N2F then calculates the time delay from each near zone point, including 

replicated points in cylindrical geometry, to the desired far zone point and stores these values in an 

array. Next it takes the E and H near zone node data and translates it to cell centered data.  

Then N2F, using the previously calculated and stored time delay, interpolates the E and H time data for 

each near zone point onto a common reference time grid using linear interpolation. Having translated 

the E and H data from cylindrical to Cartesian coordinates if required, the J and M values for each near 

zone point is calculated and integrals are performed using sums.  Having now created integrals found in 

Equations 4 and 5 in Cartesian coordinates, the numerical time derivatives of these integrals are 

performed to calculate U(t) and W(t) using centered differencing. These values are then translated to 

spherical coordinates before calculating E and E found in Equations 1-2. 

 

Input to NF2 version 1.001 

 

The first argument selects the problem geometry (igeom) with 0 designating Cartesian and 1 cylindrical. 

The next two arguments are related to the far zone spherical angles,  (azimuthal) and  (polar) angles 

(see Fig 2). The second argument, , when equal to or less than zero is the azimuthal angle of the desired 

far zone location. This value is changed by N2F to a positive value in degrees.  If this argument is initially 



positive, then  is the number of degrees in a computational slice on the azimuthal angle. The number of 

equally spaced azimuthal far zone calculations is given as 

n= int(180./)       (8) 

A similar formulation applies for the third argument , the polar angle in degrees. In this case when  is 

less than or equal to zero, the far zone calculation is performed for a single polar angle, the absolute 

value of the third argument. If  is greater than zero, then this input designates the slice polar angle and 

the number of polar angles used is 

n=int(360./)       (9) 

 

 Figure 2. Spherical coordinates for the far zone calculation surface. Spherical coordinates are a system 

of curvilinear coordinates for describing positions on a sphere. Define  to be the azimuthal angle in the 

x-y plane from the x-axis with 0 ≤  ≤ 2*,  to be the polar angle from the positive z-axis with  0 ≤  ≤ , 

and r to be distance (radius) from a point to the origin. This is the convention commonly used in physics. 

If the fourth argument is non-zero, then output files are created. The file names contain the format 

etipi where i is the number of the azimuthal slice (from 1 to n) and i is the number of the polar slice 

(from 1 to n). For example, the second azimuthal angle and the third polar angle data file would have 

the name et2p3.txt. 

Finally, for cylindrical geometries, the input field data being symmetric in the cylindrical angle must be 

normalized to the number of polar angles used to calculate this input data. To obtain the correct far 

zone area normalization, the number of uniform polar angles used in the calculation of the input near 

zone field data (nphi_data) must be given to N2F. This is the fifth argument.  N2F has a normalization 

variable 

cnst = 4**c       (10) 

where  is 3.141592653589793238 and c is the speed of light (2.99792458x108). 



When cylindrical geometry is selected, cnst contains an additional normalization factor, related to the 

cylindrical cell area, 

cnst = 4**c *nphi_data       (11) 

While a single set of input near zone data cylindrical data is read, symmetry allows us to “replicate” this 

data nphi_data times to obtain the correctly normalized far zone fields. 

 

Default Input values 

 

The following are the default input values. 

igeom = 0 

 = 0.0 

 = 0.0              (12) 

     ifileout = 0 

nphi_data = 1 

When no arguments are supplied, the far zone calculation uses Cartesian geometry at a single far zone 

location, = 0 and  = 0 and no output files are generated. 

 

Creating the near zone geometry and field data files names 

 

First, if igeom = 1, the cylindrical input data is sent to the terminal screen. The  delta for which the 

input data is associated is calculated 

dphi_data = 180./(double)nphi_data     (13) 

This is required, because in cylindrical coordinates, only a single set of data is and then assumed to be 

replicated nphi_data times, assuming equally spaced  angles. 

For cylindrical data N2F expects near zone data with the following file names Gz1.flt, Gz2.flt, and Gr1.flt 

for the bottom, top, and side of the near zone cylindrical data. The corresponding field data files should 

be named Fz1.flt, Fz2.flt, and Fr1.flt. 



For cylindrical coordinates, three distinct sets of near zone data are read. The first file (Gz1.flt) read 

corresponds to the bottom of the near zone cylindrical data. The second file (Gz2.flt) read is associated 

with the top of the near zone cylindrical data. The third file (Gr1.flt) corresponds to the data on a 

vertical line on the side of the cylinder.  

These near zone data files are in (2 x 3 = 6) separate data files. Each field file has an associated geometry 

file. The geometry file has the r and z values of the near zone data, the cylindrical angle not required. 

When igeom = 0, Cartesian near zone data is read. The near zone data lies on the surfaces of a six sided 

box, not necessarily a cube. The geometry data contains triplets (x, y, z) at each point on the near zone 

data surface.  N2F expects near zone data with the following file names Gx1.flt, Gx2.flt, Gy1.flt, Gy2.flt, 

Gz1.flt, and Gz2.ft. The corresponding field data files should be named Fx1.flt, Fx2.flt, Fy1.flt, Fy2.flt, 

Fz1.flt, and Fz2.flt. 

N2F assumes that the near zone data surrounds the origin, so the data on the y-z plane at x < 0 is 

contained in the geometry file Gx1.flt with the associated near zone field data in the file named Fx1.flt. 

The y-z plane data at x > 0 is found in input file Gx2.flt and the associated field data in Fx2.flt.  The x-z 

plane geometry and field data for y < 0 is in Gy1.flt and Fy1.flt respectively while the x-z plane y> 0 data 

is in Gy2.flt and Fy2.flt. Finally the x-y plane geometry data for z < 0 is in Gz1.flt with the corresponding 

field data in Fz1.flt with the x-y plane data for z > 0 in the geometry file Gz2.flt and the associated field 

data in Fz2.flt. 

When igeom = 0, a message appears on the terminal showing that Cartesian geometry will be used. For 

all problems, the input far zone  and  values as well as ifileout which controls the creation of output 

files is echoed to the screen. In addition, for the cylindrical geometry, nphi_data, the number of 

replication of the data in  is also displayed. 

 

Determining the number of far zone calculation points 

 

The number of far zone points to be computed is found below 

 

ncase = n * n        

where nand nare calculated above, from the input values for  and . If either the input value of  

and/or  = 0, then n and/or n is set to 1. 

 

 



Summary output file  

The summary output file, always written, is created with the name sum.txt 

 

Determine the number of near zone point on each surface 

 

It should be noted, that the far zone calculation uses cell centering. However, N2F assumes that the 

input near zone geometry and field data is node centered. If cell centered input is used, the far zone 

calculations will not be correct.  N2F also assumes that on each surface, all interior nodes are equally 

spaced, although the spacing on each surface may differ.  The input data should contain nodes on a 

regular grid with the data entered into the input file in a regular, non-random order. For Cartesian data, 

the edge nodes while equally spaced may have a different spacing than interior points. The cells that use 

edge and/or corner nodes have their areas calculated differently than interior cells. 

The function get_npoints determines the number of points in a surface file. When igeom =1, the 

number of cell centered points equals the number of node centered points minus 1. First, this function 

counts the number of bytes in a given geometry file. 

Assuming that there are 4 bytes to a float, and that all the input files contain floats, then for cylindrical 

geometry the number of points (n) in a file that contains nbytes of data 

n = nbytes / (4 * 2)       (15) 

with cylindrical geometry files containing the doublets (r ,z). 

In Cartesian coordinates, the geometry files contain triplets (x, y, z) so the number of points (n) in a file 

containing nbytes of data is 

n = nbytes / (4 * 3)      (16) 

 

The function get_npoints returns the integer n. 

The total number of input points is stored in npmax. For cylindrical geometry, taking into account the 

replication in  of the input data, the total number of points stored 

 

npmax_nphi = npmax * nphi_data     (17) 

where nphi_data = 1 for Cartesian geometry. 



Determine number of time steps 

 

The input near field data is time dependent. N2F determines the number of time steps in the input data, 

assuming that the input data is at uniform time steps. For non-uniform time steps, the input data should 

be interpolated onto a uniform time line before being used for far zone calculations. The number of time 

steps ndata is determined in the function get_ndata. The near zone E and H field file (Fz1.flt for 

cylindrical problems or Fx1.flt for Cartesian ones) is opened and the number of bytes counted to 

determine the number of floats in the file. N2F assumes that all the E and H near zone data contain the 

same number of time points. Next, the total number of coordinate points (npoints) having been passed 

is multiplied by 7 so that the number of points ndata 

 

ndata = nbytes / (7*npoints)      (18) 

 

Each field file contains groups of 7 floats. Each group consists of a time point followed by 3 components 

of the E field points followed by 3 components of the H field points for a total of 7 floats. Note that for 

cylindrical data, npoints was decreased by 1 to translate from node to cell centered data. The function 

get_ndata adds 1 to the npoints to translate back to node data when determining the total number of 

time steps. The function get_ndata returns the total number of time steps.  

 

Determine the maximum problem size before swapping occurs 

 

The input field data sets can easily become quite large, especially when there are many time steps. N2F 

uses logic dependent upon the size of the input data. The function get_memsize determines the limit on 

the product of the total number of points times the number of time steps based upon the amount of 

free memory available. This uses the UNIX system call free with the –b option to obtain the amount of 

free memory in bytes. This number is written to a temporary file in the execution directory. After this 

number is read, the file is deleted. Currently small problems have 

npmax_nphi * ndata * MEMFACTOR ≤ memsize    (18) 

where memsize = amount of free memory in bytes and MEMFACTOR is the large problem conversion 

factor translating the problem size into bytes. For an 8 GB UNIX computer, this factor is (400.0/8.55). For 

running on other UNIX platforms, a problem should be run a few times varying number of time steps. 

Using the UNIX top command in one window while running N2F in another, the appropriate 

MEMFACTOR value can be obtained. Note that this factor is approximate since there is some overhead 



which does not scale with the number of time points. For sufficiently large problems, the percentage of 

memory used by this overhead should be small. 

 

Dynamically created arrays for “small” problems 

 

When the memory requirement is small, imem = 0, otherwise it is 1. When imem = 1, a warning message 

is sent to the screen. In either case the total number of points times the number of time steps and the 

amount of free memory required and available are printed to the screen. 

When imem = 0, a large dynamically created array is used to store all of the time delays for all far zone 

points. Otherwise these delays are calculated several times during the simulation with a resulting 

slowing of the calculations. For small problems, when igeom = 0 (Cartesian) all of the delays (for each 

input geometry data point for each distinct output  and  combination) are stored in a large 2D array 

(npmax X ncase) named timedelay where 

ncase = n * n        (19) 

This array is dynamically created and initialized to zero.  

Next, for both large and small problems, a 1D array to hold the npmax cell areas is dynamically created 

and initialized to zero. If the number of near zone geometry points is too large, the dynamic memory 

allocation will fail and N2F will print an error message to the screen before terminating. 

For cylindrical geometry (igeom=1), cos() and sin() for each value of to be calculated is stored in the 

dynamically allocated and zero initialized cosp and sinp arrays respectively. 

For Cartesian geometry, all of the near zone x data is store in the dynamically allocated and initialized to 

zero array xsurf, being a 1D array npmax long. All of the y values are similarly stored in ysurf while the z 

values are store in zsurf. For cylindrical geometry, all of the near zone z values are stored in zsurf, the r 

values in xsurf. The ysurf array is not needed so is not created. 

 

Reading and calculating near zone cell relevant data 

 

For cylindrical geometry, the function find_cell_data_rz is called to load the near zone input geometry 

data into the xsurf and zsurf arrays as well as calculates the effective near zone surface and cell areas. 

This function first loops over the bottom and then the top of the near zone cylinder geometry. To 

calculate the cell area on these two surfaces, this function translates the zsurf node data to cell centered 

locations. For the nth cell radius 



rcelln = 0.5*(xsurfn+1 + xsurfn)      (20) 

and the cell area is 

cellarean = *rcelln*rcelln – totalarea      (21) 

 

where totalarea is the combined area of  cells 1 through n-1. 

 

For the side of the cylinder the cell radius is given from the x (or r) value of xsurf corresponding to the 

near zone cylinder side data so that for the nth cell on the side surface of the near zone cylinder 

 

cellarea n= 2**rcell*zcelln – totalarea      (22) 

 

where  

zcelln = 0.5*(zsurfn+1 + zsurfn) – zmin      (23) 

 

the cell centered z location of the nth cell translated measured from the origin and totalarea is the 

combined area from cells 1 through n-1 and zmin is the minimum value. 

Since the top and bottom of the near zone cylinder has the area *radius*radius while the near zone 

cylinder side has the area 2**radius*(zmax-zmin) with zmax the maximum z value, these values are 

compared to the total area summed from the individual cells to ensure that there is agreement. These 

values are printed to the screen for the user to view. 

For Cartesian geometry, the function find_cell_data_xyz is called to load the near zone geometry data 

into the xsurf, ysurf, and zsurf arrays and calculates the near zone surface areas and cell areas. 

First, the function find_surf finds the locations of the six sides of the near zone geometry data.  This 

function also converts the locations of the z locations of the two x-y planes of the box to integers in 

centimeters, assuming that the input geometry data is meters. It also converts the locations of the two y 

locations of the x-z planes of the near zone data box to integers in centimeters as well as the z locations 

of the two x-y planes of the near zone geometry box. Next, it finds the center of the near zone geometry 

data again in integers using centimeters. Integers are used to prevent round off errors upon comparing 

the total area obtained by summing the individual near zone cell areas with the total area obtained 

using the near zone surface dimensions. 



Cells falling between edge points and points adjacent to edge points have different areas than interior 

cells. The function find_edge calculates the distance between edge points while the function 

find_next_point finds the distance between the edge points and the closest interior or adjacent point.   

The function cell_area calculates the cell areas for the cell centered near zone geometry input data, 

taking into account, those cells that touch a single edge and those that touch a corner. On each surface, 

the cells that use edge nodes all have the same area, possibly different than interior cells.  On each 

surface, the corner cells are assumed to have the same area, although these areas differ from both 

interior and edge cell areas. 

In addition to calculating the individual cell areas, the total surface area is calculated. The function 

print_cell_data prints these values, the numbers of interior, edge and corner points, and the number of 

points, and the length between interior points in both dimensions for each surface to the screen.  

The functions read_data_rz and read_data_xyz read the geometry input files for cylindrical and 

Cartesian coordinates respectively.  The data read for read_data_rz are pairs of data (r, z). To switch 

from node to cell centered data, N2F takes for the nth point 

xsurfn = 0.5*(rn + rn-1)      (24) 

and 

zsurfn = 0.5*(zn + zn-1)      (25) 

N2F also calculates the maximum radial extent of the near zone data (radmax). 

The function read_data_xyz reads the Cartesian (x, y, z) nodal data and also calculates the maximum 

radial value of the near zone geometry data (radmax). 

The far zone calculation radius (rf) has a default value of 1.0 m. If this value is smaller than radmax, rf is 

changed to 

rf = 2.0 * radmax      (26) 

and a message is sent to the screen.  This ensures that the radius of the far zone calculation always falls 

outside of the near zone field. 

Having defined the near zone geometry cell properties, N2F proceeds to define and fill the near zone E 

and H fields arrays. 

For large problems (imem = 1) 2D dynamic arrays are allocated (6 time the number of time points) for a 

single near zone geometry point. Data is repeatedly read and manipulated before the next near zone 

point is required. Each geometry point has 3 E and 3 H field components, each component varying in 

time. 

For small problems, the dynamic field arrays are 3D (6 times the total number of points times the 

number of time steps). All components of the fields (3 E and 3 H) for every near zone geometry point for 



all time values are loaded into the dynamically allocated array ehn.  Since the input data is only read 

once, small problems are much faster than large ones. 

For either small or large problems, timen and timeh are dynamically allocated arrays that will store time 

data. These arrays are 1D ndata long and are initialized to zero.  Next, for the ncase number of far zone 

calculations to be performed, the dynamically allocated arrays xyz_f and spher contain spherical 

coordinate translation factors for each of the far zone points. These arrays are dynamically allocated and 

initialized to zero. The array xyz_f is 3 by ncase while spher is 4 by ncase in length.  

The total number of time points (ndata) is printed to the screen as a diagnostic. N2F assumes that the 

input near zone time data has a uniform delta time. The function time_step reads the first surface 

(either Fx1.flt or Fz1.flt) E & H near zone data file. It reads data in groups of 7 floats. The first float in a 

group is the time stamp, then the 3 E field components followed by the 3 H field components. The 

function get_ndata, called earlier has already determined the number of time points. The function 

time_step loads the time stamps into the time array timeh, assuming that all of the near zone field data 

has the same time stamps. Besides loading the time array, the uniform time step (dt) is calculated in this 

function 

t = timeh[1] – timeh[0]      (27) 

 

the difference between the first two time stamps. The first time point, the delta time and the last time 

point are written to the screen as a diagnostic. 

 

N2F next reads the near zone time varying E and H field data. 

 

Reading E and H time dependent near zone field data 

 

For small problems, the function read_data_eh_rz loads the E and H near zone data in cylindrical 

coordinates.  First, temporary 2D storage arrays eh and ehold are created and zeroed. eh stores the E 

and H values of the nth near zone geometry point while ehold stores the values from the previous near 

zone point (n-1).  

For the top and bottom of the near zone cylinder, the r, ,  and z components of the E and H fields must 

be converted to Cartesian x, y, and z components. In addition, the E and H components which are node 

based must be converted to cell centered values.  Therefore for the nth point either on the top or 

bottom of the cylinder 

Exn = 0.5*(Ern+Ern-1)*cos() – 0.5*(Ephin+Ephin-1)*sin() 



Eyn = 0.5*(Ern+Ern-1)*sin()+0.5*(Ephin+Ephin-1)*cos() 

                                                               Ezn = 0                                                                                          (28) 

Hxn = 0.5*(Hrn+Hrn-1)*cos() – 0.5*(Hn+Hn-1)*sin() 

Hyn = 0.5*(Hrn+Hrn-1)*sin()+0.5*(Hn+Hn-1)*cos() 

                                                                              Hzn = 0 

Next, the E and H data for the side of the near zone cylinder is read and again translated from node to 

cell centered values. In this case 

Exn = -0.5*(En+En-1)*sin() 

Eyn = 0.5*(En+En-1)*cos() 

Ezn = 0.5*(Ezn+Ezn-1)                                                                      (29) 

Hxn = -0.5*(Hn+Hn-1)*sin() 

Hyn = 0.5*(Hn+Hn-1)*cos() 

Hzn = 0.5*(Hzn+Hzn-1) 

For cylindrical data, the E and H near zone data is the same for all near zone  values. Only the cos() 

and sin() values in the above equations change with  The above time dependent E and H values are 

stored in the 3D dynamic array ehn(component of E or H, location, time). 

The temporary 2D arrays eh and ehold are deleted after the ehn array is loaded. 

The near zone data manipulation is much simpler for the Cartesian geometry, using the function 

read_data_eh_xyz. In this case the data for each component for each point for each time is simply 

loaded into the 3D dynamically allocated array ehn (component of E or H, location, time). The node to 

cell centered translation is performed elsewhere. 

After reading the near zone geometry data and creating the necessary dynamically allocated arrays that 

will hold the near zone field data N2F begins far zone calculations. There are two outer loops. The most 

outer loop loops over the far zone , calculating n different values, converted from input degrees to 

radians. The inner loop loops over the far zone , n times, with  converted from degrees to radians.  

There are ncase = n*n number of far zone calculations and the far zone (, ) case index variable is 

icase.  First, the sphere array is loaded for each far zone evaluation point 

spher[0][icase] = cos() 

spher[1][icase] = sin() 

spher[2][icase] = cos()                                                                 (30) 



spher[3][icase] = sin() 

Next, the xyz_f array is loaded 

xyz_f[0][icase] = spher[1][icase]*spher[2][icase] 

xyz_f[1][icase] = spher[1][icase]*spher[3][icase]                                           (31) 

xyz_f[2][icase] = spher[0][icase] 

Next N2F calculates the time delay from each near zone point to each far zone point. The time delay is 

the time it takes the EM signal generated at a given near zone point to reach the specified far zone point 

travelling at the speed of light assuming a vacuum. It also calculates the maximum time delay for each 

far zone calculation. 

For cylindrical geometry, for large problems the function find_timed_rz_mem finds the minimum and 

maximum time delay for each far zone calculation. For small problems, besides finding the minimum 

and maximum time delay, the time delays for all the near zone coordinates are calculated and stored in 

the timedelay array using the function find_timed_rz. 

For both large and small problems, the function find_timed_xyz calculates all of the time delays and the 

minimum and maximum time delay for each far zone calculation.  

If we assume that rf is the radius of the far zone calculation point and r is the radius of a specific near 

zone coordinate, then in cylindrical coordinates 

r = rsurf*cos(n)*sin(f)*cos(f)+rsurf*sin(n)*sin(f)*cos(f)+zsurf*cos(f)   (32) 

where “n” signifies near zone and “f” far zone 

and the time delay for each near zone point to each far zone point is 

 timedelay[near zone point, far zone point] = (rf – r) / c calculated in the function find_timed. 

In Cartesian coordinates 

r = xsurf*sin(f)*cos(f)+ysurf*sin(f)*cos(f)+zsurf*cos(f)   (33) 

where  “f” is  far zone and xsurf, ysurf, and zsurf are the x,  y,  and z coordinate of each near zone point  

and the time delay for each near zone point to each far zone point is again 

timedelay = (rf – r) /c      (34) 

calculated in the function find_timed. 



tminmax contains the maximum (tminmax[0]) and the minimum (tminmax[1]) time delays. The variable 

tmin contains the minimum time delay over all the far zone points while tmax contains the 

corresponding maximum time delay. These two values are printed to the screen. 

N2F next calculates the minimum time required for a near zone signal to reach the closest far zone 

point, assuming that the far zone radius is 1 meter (unless the near zone data cannot be contained this 

sphere. 

For near zone data sets which are geometrically larger than 1 m, the far zone signal is translated to the 1 

meter location as commonly assumed that is the 1/R multiplying term is assumed to be 1. In addition, 

the –R/c term in the argument for U(t) and W(t), representing a simple phase shift is neglected. 

addtime = tmin –(rf – 1.)/c     (35) 

We next construct a time grid that will be larger than the time interval using all the near zone and far 

zone coordinates. The final time for this global or reference time grid is 

ttmax = timehndata – timeh0 + (tmax-tmin)    (36) 

where  timehndata is the last time point and timeh0 is the first point of the time array. 

Having previously calculated the near zone data time step, delta_time, we create this reference time 

grid using ngrid points with 

ngrid =  ttmax/delta_time + 11      (37) 

 

where N2F has arbitrarily added 11 time steps to ensure that the universal time grid extends beyond the 

largest near zone time data point. 

Having now determined the number of time steps to be used in the far zone calculations, N2F 

dynamically allocates ehg which contains the time points and E and H field data for each far zone 

calculation as well as the far zone calculation arrays uw and utp.  ehg is 7 by ngrid, uw  12 by ngrid and 

utp is 4 by ngrid. 

Next the function time_grid is used to create the reference time grid. Assuming that the time step of the 

reference time grid is the same as the time step of the near zone data (Eq. 27) 

t = delta_time       (38) 

 

then the reference time grid is 

ehg[0][ia] = ia*t      (39) 

where 0 ≤ia ≤ ngrid-1 



This time array is stored as the first component of ehg. The number of time nodes in this reference 

array, as well as the first and last time points and the time step is printed to the screen. 

Having created the reference time grid, N2F loops over the number of  far zone points and  far zone 

points. The far zone case number is printed to the screen as well as theand  values for this case in 

degrees. If the create output file option was selected on the command line (ifileout > 0) an output file 

related to the far zone  and  point number is created etXpY.txt where 1 ≤X goes ≤ n and  1 ≤Y  ≤ n. 

ehg is zeroed, except for the first component which contains the reference time grid. 

 

Far Zone calculation – Large Problems – Cylindrical geometry (imem = 1; igeom = 1) 

For large cylindrical problems, the dynamically allocated array ehnmem, which contains the time 

dependent E and H for a single near zone point, is zeroed. For large problems, N2F loops over each of 

the 3 near zone surfaces. The arrays eh and ehold, being 6 by ndata, are zeroed before reading in the 

near zone data for a surface. The time dependent E and H field data for the first point on a surface is 

read and loaded into ehold. After reading this data, a message is sent to the screen indicating that the 

first of N points on surface S has been read, where N is the total number of near zone points on surface 

S, going from 1 to 3. 

N2F then loops over each near zone point on a surface, which for cylindrical geometry is a line (N2F 

replicates the near zone data over the near zone ). 

After every 10th point is read, a progress message is sent to the screen. After reading the E and  H field 

data for a near zone point, the function timedelay_rz is called to calculate the time delay at each 

replicated  value from the near zone point to the given far zone point.  

For each near zone replicated  data value, N2F time shifts the input near zone time data 

timen[i] = timeh[i] + timedelay – tmin      (40) 

where  1 ≤ I ≤ ndata, timeh contains the original time data and tmin is the minimum time delay. 

Next the near Zone E and H data is transformed to Cartesian coordinates and translated from node to 

cell centered values 

ehnmem[0]  = 0.5*(eh[0] +ehold[0])*cos() -0.5*(eh[1]+ehold[1])*sin() 

ehnmem[1]  = 0.5*(eh[0] +ehold[0])*sin() +0.5*(eh[1]+ehold[1])*cos() 

ehnmem[2] = 0.0                                                                        (41) 

ehnmem[3]  = 0.5*(eh[3] +ehold[3])*cos() -0.5*(eh[4]+ehold[4])*sin() 

ehnmem[4]  = 0.5*(eh[3] +ehold[3])*sin() +0.5*(eh[4]+ehold[4])*cos() 



ehnmem[5] = 0.0 

Having switched to cell centered values with the appropriate time shift, N2F interpolates these time 

dependent values onto the reference time grid using the function interpmem loading the dynamically 

allocated array ehg with the interpolated values. 

The function interpmem loops over the reference time grid. If the reference time grid points are less 

than the starting time point of the time shifted near zone data, then these time grid data points are 

assigned the values of the near zone E and H minimum time values, which are typically zero. 

If the reference time grid points are greater than the maximum time shifted time of the near zone point, 

then these reference time grid points are assigned the value of E and H from the maximum time shifted 

value for E and H, again typically zero. 

For all the reference time grid points between these two extremes, a linear interpolation in time is used 

to translate from the near zone data to the reference grid. If for some reason the interpolation is not 

successful, an error message is printed to the screen, an error file named error.txt is created and the 

“offending” data point written to this file; then N2F terminates. 

Having successfully interpolated the near zone cell centered E and H data to the reference time grid; the 

function int_uw_ends performs the appropriate surface cell integrations on the bottom and top of the 

near zone cylinder.  

For each time step, for each near zone coordinate for each replicated value, the cell centered time 

shifted onto the reference grid  E and H data (stored in the dynamically allocated ehg) is transformed 

from Cartesian to Cylindrical coordinates 

temprpz[0] = ehg[1]*cos()-ehg[2]*sin() 

temprpz[1] = -ehg[1]*sin()+ehg[2]*cos() 

temprpz[2] = ehg[3] 

temprpz[3] = ehg[4]*cos()-ehg[5]*sin()                                                  (42) 

temprpz[4] = -ehg[4]*sin()+ehg[5]*cos() 

temprpz[5] = ehg[6] 

with ehg[0] containing the reference time grid. The function then calculates the cross products E × n and 

H × n where n is the surface normal vector to the bottom and top of the near zone cylinder, disregarding 

the z component of the cross products which is zero 

crossrpz[0]  =  temprpz[1] 

crossrpz[1]  = -temprpz[0] 



crossrpz[2] = 0.0 

crossrpz[3] = temprpz[4]                                                                 (43) 

crossrpz[4] = temprpz[3] 

crossrpz[5] = 0.0 

Next, the function transforms back to Cartesian coordinates from the cylindrical coordinates, integrates 

over each cell area, and sums assuming that the cell centered E and H values are constant over a cell 

area 

uw[0] = Ʃ ( norm[is]*(crossrpz[0]*cos()-crossrpz[1]*sin())*cellarea/cnst) 

uw[1] =  Ʃ ( norm[is]*(crossrpz[0]*sin()+crossrpz[1]*cos())*cellarea/cnst) 

uw[3] =  Ʃ(- norm[is]*(crossrpz[3]*cos()-crossrpz[4]*sin())*cellarea/cnst)                  (44) 

uw[4] =  Ʃ (- norm[is]*(crossrpz[3]*sin()+crossrpz[4]*cos()*cellarea/cnst) 

 

where norm[is] = -1 for the bottom of the cylinder (is = 0) and 1 for the top (is=1) and cnst is the 

normalizing constant  4 *  * c (with R set to 1 in Eqs. 4-5). 

After the uw values are calculated for a given near zone point (including the replicated  values) the E 

and H data from the original near zone data is loaded into the ehold array and the next near zone point 

data is read into the eh array so that the next cell centered interpolated point can be calculated. 

After all of the bottom and top cells have been integrated, a similar procedure is used to add the 

cylinder surface (is = 2) near zone data, again replicated nphi_data  times to the far zone calculation. 

Again, the near zone cylinder side data file is opened and the E and H data loaded into ehold. The next 

point near zone time data is loaded into timeh and the E and H data loaded into eh. For each  value the 

timedelay is calculated as before and a time shifted new time array associated with each of the 

replicated near zone points is loaded into timen. The near zone data is then translated from node to cell 

centered values  

ehnmem[0]  = -0.5*(eh[1] +ehold[1])*sin() 

ehnmem[1]  = 0.5*(eh[1]+ehold[1])*cos() 

ehnmem[2] = 0.5*(eh[2]+ehold[2]) 

ehnmem[3]  = -0.5*(eh[4]+ehold[4])*sin()                                                (45) 

ehnmem[4]  = 0.5*(eh[4]+ehold[4])*cos() 



ehnmem[5] = 0.5*(eh[5]+ehold[5]) 

Having switched to cell centered values with the appropriate time shift, N2F interpolates these time 

dependent values onto the reference time grid using the function interpmem loading the dynamically 

allocated array ehg with the interpolated values. 

Having successfully interpolated the near zone cell centered E and H data to the reference time grid, the 

function int_uw_side performs the appropriate surface cell integrations on side of the near zone 

cylinder 

For each time step, for each near zone coordinate for each replicated  value, the cell centered time 

shifted onto the reference grid  E and H data (stored in the ehg dynamically allocated array) is first 

transformed from Cartesian to Cylindrical coordinates 

temprpz[0] = ehg[1]*cos()-ehg[2]*sin() 

temprpz[1] = -ehg[1]*sin()+ehg[2]*cos() 

temprpz[2] = ehg[3] 

temprpz[3] = ehg[4]*cos()-ehg[5]*sin()                                                 (46) 

temprpz[4] = -ehg[4]*sin()+ehg[5]*cos() 

temprpz[5] = ehg[6] 

remembering that ehg[0] contains the reference time grid. The function nexts calculates the cross 

products E × n and H × n where n is the surface normal vector to side of the near zone cylinder and 

disregarding the z component of these cross product which is zero 

 

crossrpz[0]  =  0.0 

crossrpz[1]  = temprpz[2] 

crossrpz[2] = -temprpz[1] 

crossrpz[3] = 0.0                                                                     (47) 

crossrpz[4] = temprpz[5] 

crossrpz[5] = -temprpz[4] 

Next, the function transforms back to Cartesian coordinates from the cylindrical coordinates and 

integrates over each cell area and sums, assuming that the cell centered E and H values are constant 

over a cell area 



uw[0] =  Ʃ ((crossrpz[0]*cos()-crossrpz[1]*sin())*cellarea/cnst) 

uw[1] =  Ʃ ((crossrpz[0]*sin()+crossrpz[1]*cos())*cellarea/cnst) 

uw[2] = Ʃ(crossrpz[2]*cellarea/cnst) 

uw[3] = - Ʃ ((crossrpz[3]*cos()-crossrpz[4]*sin())*cellarea/cnst)                          (48) 

uw[4] =  Ʃ ((crossrpz[3]*sin()+crossrpz[4]*cos())*cellarea/cnst) 

uw[5] = -Ʃ(crossrpz[2]*cellarea/cnst) 

where cnst is the normalizing constant  4 *  * c (with R in Eqs 4-5 set to 1) 

After the uw values are calculated for a given near zone point (including the replicated  values) the E 

and H data from the original near zone data is loaded into ehold and the next near zone data is read into 

eh so that the next cell centered interpolated point can be calculated. 

If igeom is not 1, then the geometry is Cartesian and transformations involving cylindrical coordinates 

are not required. 

Far Zone calculation – Large Problems – Cartesian geometry (imem = 1; igeom = 0) 

 

N2F loops over each near zone point on each surface of the near zone block. After every 10th point is 

read, a progress message is sent to the screen. After reading the E and H field data for a near zone point, 

the time delay previously calculated for each near zone point is added to the time array for each near 

zone point.  For Cartesian geometries, the ehnmem array simply contains the E and H data, no 

coordinate transformation is required, 

The interpolation function interpmem is called, which interpolates the E and H near zone time data onto 

the reference time grid. Then the integration routine function int_uw integrates E × n and H × n over 

each cell on the near zone block. 

Function int_uw is straightforward in Cartesian coordinates using the previously calculated near zone 

cell areas.  

First, the –x and +x surface data is used 

uw[1] =Ʃ (norm*ehg[3]*cellarea/cnst) 

uw[2] =Ʃ (-norm*ehg[2]*cellarea/cnst) 

uw[4] = Ʃ(norm*ehg[6]*cellarea/cnst)                                                     (49) 

uw[5] = Ʃ(-norm*ehg[5]*cellarea/cnst) 



where norm is -1 for –x and 1 for +x surface  

Next, the –y and +y surface data is used 

uw[1] = Ʃ(-norm*ehg[3]*cellarea/cnst) 

uw[2] = Ʃ(norm*ehg[1]*cellarea/cnst) 

uw[3] = Ʃ(-norm*ehg[6]*cellarea/cnst)                                                  (50) 

uw[5] = Ʃ(norm*ehg[6]*cellarea/cnst) 

where norm is -1 for –y and 1 for +y surface  

Finally, the –z and +z surface data is used 

uw[0] = Ʃ(norm*ehg[2]*cellarea/cnst) 

uw[1] = Ʃ(-norm*ehg[1]*cellarea/cnst) 

uw[3] = Ʃ(-norm*ehg[5]*cellarea/cnst)                                                  (51) 

uw[4] = Ʃ(norm*ehg[4]*cellarea/cnst) 

where norm is -1 for –z and 1 for +z surface  

and cnst is the constant 4* * c (with R = 1 found in Eqs 4-5) 

 

 

Far Zone calculation – Small Problems – Cylindrical geometry (imem = 0; igeom = 1) 

 

For small problems, all of the time varying E and H data for all the near zone points fit into memory and 

have been previously loaded into the dynamically allocated ehn array. First the bottom of the near zone 

cylinder data points are used, then the top of the cylinder. Finally the cylinder side data is used. For each 

near zone point on each of these surfaces, for each of the replicated nphi_data angles, the previously 

calculated time delay is added to the time array. The function interp then interpolates the near zone 

input time onto the reference time grid. 

Function interp is similar to interpmem except that unlike interpmem, the time delay array contains all 

of the time delay data, based on the distance from each replicated near zone point. This function loops 

over the reference time grid. If the reference time grid points are less than the starting time point of the 

time shifted near zone data, then these time grid data points are assigned the values of the near zone E 

and H minimum time values, which are typically zero. 



If the reference time grid points are greater than the maximum time shifted time of the near zone point, 

then these reference time grid points are assigned the value of E and H from the maximum time shifted 

value for E and H, again typically zero. 

For all the reference time grid points between these two extremes, a linear interpolation in time is used 

to translate from the near zone data to the reference grid. If for some reason the interpolation is not 

successful, an error message is printed to the screen, an error file named error.txt is created and the 

“offending” data point written to this file, then N2F terminates. 

Having successfully interpolated the near zone cell centered E and H data to the reference time grid; the 

function int_uw_ends performs the appropriate surface cell integrations on the bottom and top of the 

near zone cylinder.  

For each time step, for each near zone coordinate for each replicated value, the cell centered time 

shifted onto the reference grid  E and H data (stored in dynamically allocated ehg) is transformed from 

Cartesian to Cylindrical coordinates 

temprpz[0] = ehg[1]*cos()-ehg[2]*sin() 

temprpz[1] = -ehg[1]*sin()+ehg[2]*cos() 

temprpz[2] = ehg[3] 

temprpz[3] = ehg[4]*cos()-ehg[5]*sin()                                               (52) 

temprpz[4] = -ehg[4]*sin()+ehg[5]*cos() 

temprpz[5] = ehg[6] 

with ehg[0] containing the reference time grid. The function next calculates the cross products E ×n and 

H × n where n is the surface normal vector to the bottom and top of the near zone cylinder and 

disregarding the z component of the cross products which is zero 

crossrpz[0]  =  temprpz[1] 

crossrpz[1]  = -temprpz[0] 

crossrpz[2] = 0.0 

crossrpz[3] = temprpz[4]                                                                 (53) 

crossrpz[4] = temprpz[3] 

crossrpz[5] = 0.0 

Next, the function transforms back to Cartesian coordinates from the cylindrical coordinates and 

integrates over each cell area and sums, assuming that the cell centered E and H values are constant 

over a cell area 



uw[0] =  Ʃ ( norm[is]*(crossrpz[0]*cos()-crossrpz[1]*sin())*cellarea/cnst) 

uw[1] = Ʃ ( norm[is]*(crossrpz[0]*sin()+crossrpz[1]*cos())*cellarea/cnst) 

uw[3] =  Ʃ (- norm[is]*(crossrpz[3]*cos()-crossrpz[4]*sin())*cellarea/cnst)                  (54) 

uw[4] = Ʃ (-norm[is]*(crossrpz[3]*sin()+crossrpz[4]*cos()*cellarea/cnst) 

where norm[is] = -1 for the bottom of the cylinder (is = 0) and 1 for the top (is=1) and cnst is the 

normalizing constant  4 *  * c (with R = 1 found in Eqs.4-5) 

After all of the bottom and top cells have been integrated, a similar procedure is used to add the 

cylinder surface (is = 2) near zone data, again replicated nphi_data times for the far zone calculation. 

The near zone time data is loaded into timeh and the E and H data loaded into eh. For each  value the 

time delay is calculated as before and a time shifted new time array associated with each of the 

replicated near zone points is loaded into timen. The near zone data is then translated from node to cell 

centered values  

ehnmem[0]  = -0.5*(eh[1] +ehold[1])*sin() 

ehnmem[1]  = 0.5*(eh[1]+ehold[1])*cos() 

ehnmem[2] = 0.5*(eh[2]+ehold[2]) 

ehnmem[3]  = -0.5*(eh[4]+ehold[4])*sin()                                                 (55) 

ehnmem[4]  = 0.5*(eh[4]+ehold[4])*cos() 

ehnmem[5] = 0.5*(eh[5]+ehold[5]) 

Having switched to cell centered values with the appropriate time shift, N2F interpolates these time 

dependent values onto the reference time grid using the function interp loading the dynamically 

allocated ehg with the interpolated values. 

Having successfully interpolated the near zone cell centered E and H data to the reference time grid, the 

function int_uw_side performs the appropriate surface cell integrations on side of the near zone 

cylinder 

For each time step, for each near zone coordinate for each replicated  value, the cell centered time 

shifted onto the reference grid E and H data (stored in dynamically allocated ehg) is first transformed 

from Cartesian to cylindrical coordinates 

temprpz[0] = ehg[1]*cos()-ehg[2]*sin() 

temprpz[1] = -ehg[1]*sin()+ehg[2]*cos() 

temprpz[2] = ehg[3] 



temprpz[3] = ehg[4]*cos()-ehg[5]*sin()                                                 (56) 

temprpz[4] = -ehg[4]*sin()+ehg[5]*cos() 

temprpz[5] = ehg[6] 

remembering that ehg[0] contains the reference time grid. The function then calculates the cross 

products E × n and H × n where n is the surface normal vector to side of the near zone cylinder and 

disregarding the z component of the cross products which is zero 

crossrpz[0]  =  0.0 

crossrpz[1]  = temprpz[2] 

crossrpz[2] = -temprpz[1] 

crossrpz[3] = 0.0                                                                      (57) 

crossrpz[4] = temprpz[5] 

crossrpz[5] = -temprpz[4] 

 

Next, the function transforms back to Cartesian coordinates from the cylindrical coordinates and 

integrates over each cell area and sums, assuming that the cell centered E and H values are constant 

over a cell area 

uw[0] =  Ʃ ((crossrpz[0]*cos()-crossrpz[1]*sin())*cellarea/cnst) 

uw[1] =  Ʃ ((crossrpz[0]*sin()+crossrpz[1]*cos())*cellarea/cnst) 

uw[2] = Ʃ(crossrpz[2]*cellarea/cnst) 

uw[3] = - Ʃ ((crossrpz[3]*cos()-crossrpz[4]*sin())*cellarea/cnst)                        (58) 

uw[4] =  Ʃ ((crossrpz[3]*sin()+crossrpz[4]*cos())*cellarea/cnst) 

uw[5] = -Ʃ(crossrpz[2]*cellarea/cnst) 

where cnst is the normalizing constant  4 *  * c (where R = 1 found in Eqs. 4-5) 

 

 

 

 



Far Zone calculation – Small Problems – Cartesian geometry (imem = 0; igeom = 0) 

 

N2F loops over each near zone point on each surface of the near zone block. Being a small problem all of 

the near zone E and H field data has been previously loaded into ehn.  The time delay previously 

calculated for each near zone point is added to the time array for each near zone point.  For Cartesian 

geometries, ehn contains the E and H data, no coordinate transformation is required. 

Next, the interpolation function interp is called, which interpolates the E and H near zone time data 

onto the reference time grid. Then the integration function int_uw integrates E × n and H × n over each 

cell on the near zone block surfaces. 

Function int_uw is straightforward in Cartesian coordinates using the previously calculated near zone 

cell areas.  

First, the –x and +x surface data is used 

uw[1] =Ʃ(norm*ehg[3]*cellarea/cnst) 

uw[2] =Ʃ(-norm*ehg[2]*cellarea/cnst) 

uw[4] = Ʃ(norm*ehg[6]*cellarea/cnst)                                                     (59) 

uw[5] = Ʃ(-norm*ehg[5]*cellarea/cnst) 

 

where norm is -1 for –x and 1 for +x surface  

Next, the –y and +y surface data is used 

uw[1] =Ʃ(-norm*ehg[3]*cellarea/cnst) 

uw[2] =Ʃ(norm*ehg[1]*cellarea/cnst) 

uw[3] =Ʃ(-norm*ehg[6]*cellarea/cnst)                                                    (60) 

uw[5] =Ʃ(norm*ehg[6]*cellarea/cnst) 

where norm is -1 for –y and 1 for +y surface  

Finally, the –z and +z surface data is used 

uw[0] = Ʃ(norm*ehg[2]*cellarea/cnst) 

uw[1] = Ʃ(-norm*ehg[1]*cellarea/cnst) 

uw[3] = Ʃ(-norm*ehg[5]*cellarea/cnst)                                                    (61) 



uw[4] = Ʃ(norm*ehg[4]*cellarea/cnst) 

where norm is -1 for –x and 1 for +x surface and  

cnst is the constant 4* * c where R = 1 found in Eqs.4-5 

 

Calculate derivatives of u and w for both large and problems, Cartesian and 

Cylindrical coordinates 

 

After calculating the integrated u and w in Cartesian coordinates (using transformed arrays from 

cylindrical geometry if required) N2F calls derive_uw to calculate the time derivative of the u and w. 

This function calculates the time derivatives of the 6 components of the uw array. The first three 

components of uw contain the u values (ux, uy, uz) , the next 3 contain the w  values (wx, wy, wz) 

The 6 time derivative vector values are loaded into the last 6 locations of uw (uw  being 12 x ngrid, 

where ngrid is the number of reference time points).  uw contain the values for the following 12 

variables 

ux  uy  uz  wx  wy  wz 
𝜕𝑢𝑥

𝜕𝑡    
𝜕𝑢𝑦

𝜕𝑡       
𝜕𝑢𝑧

𝜕𝑡
  

𝜕𝑤𝑥 

𝜕𝑡   
 𝜕𝑤𝑦

𝜕𝑡    
𝜕𝑤𝑧

𝜕𝑡
 

For the first time grid point 

uw[i+6][0] = (uw[i][1] – uw[i][0]) /t                                                       (62) 

 1 ≤ i ≤ 6 and t is the reference time grid step size. This is a one-sided time derivative and is usually 

zero, assuming that the reference time grid encompasses all of the near zone time data, shifted to the 

far zone point.  For all the time points between these extremes, a two sided time derivative is used 

uw[6+i][ia] =(uw[i][ia+1]-uw[i][ia-1])/(2*t)                                             (63) 

where ia goes from the second time point to the next to last time point (ngrid-1) and 1 ≤ i ≤ 6). 

The final time grid derivative is set equal to the derivative of the previous time point. 

uw[i+6][ngrid] = uw[i][ngrid-1]                                                                     (64) 

Since the reference time grid should encompass all of the time values, these derivatives are usually zero. 

Finally, N2F transforms these derivatives from Cartesian to Spherical coordinates using the function 

transform_uw. This function transforms the du/dt and dw/dt values from Cartesian to spherical 

coordinates without calculating the unrequired r component. 

utp[0][ia] contains the  component of du/dt for the ia time grid point 



utp[1][ia] contains the  component of du/dt for the ia time grid point 

utp[2][ia] contains the  component of dw/dt for the ia time grid point 

utp[3][ia] contains the  component of dw/dt for the ia time grid point 

 

Final Calculations 

 

Looping over all the time grid points 1 ≤ ia ≤ ngrid Using Eqs 1-2, N2F calculates 

E = -(*utp[2][ia] + utp[1][ia])                                                                           (65) 

and 

E = -*utp[3][ia]+utp[0][ia]                                                                               (66) 

 

N2F prints the maximum absolute value of Eand E and the time where these values occur, assuming 

that these values occur at a time t 

 t> tmax + addtime                                                                                       (67) 

where tmax is the maximum time delay and addtime is from Eq. 35 to prevent N2F from  finding 

spurious signal spikes from times  earlier than the time it takes a signal to arrive at the far zone point 

from the farthest near zone point. For these earlier times, the calculation is not valid. 

N2F prints to the summary file (sum.txt) and the screen for each far zone  and value 

i i      t  E   t E      where 

 iis the index of the loop over  corresponding to the maximum absolute value of E  

 iis the index of the loop over  corresponding to the maximum absolute value of E 

 is the angle in degrees corresponding i  

is the angle in degrees corresponding i  

t is the time where E is maximum of the absolute value 

tis the time where E is maximum of the absolute value 

E is the maximum of the absolute value 



E is the maximum of the absolute value 

 

If the output flag ifileout > 0, then for each far zone  and value, an output file is created, each file 

having three columns of data: time t, E(t) , and E(t). 

 

After writing each far zone point data file and the summary file, N2F execution ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Functions 

 

void itoa(int n, char *s)  

converts integer n > 0 to character  s. Used to create name of output file. 

void reverse(char *s)  

reverses order of characters in s. Used to create name of output file. 

void interp(int ic, double *timen, double ***ehn, int ndata, double **ehg, int ngrid, double delta_time) 

For small problems, for far zone point index ic, using the reference time grid timen which contains ngrid 

time points, this function linearly interpolates the ndata time points of the near zone E and H data 

contained in ehn onto the reference time grid and stores the new results in ehg. The linear interpolation 

uses the time grid t, delta_time. 

void interpmem(double *timen, double ***ehn, int ndata, double **ehg, int ngrid, double delta_time)  

For large problems, using the reference time grid timen which contains ngrid time points, this function 

linearly interpolates the ndata time points of the near zone E and H data contained in ehn onto the 

reference time grid and stores the new results in ehg. The linear interpolation uses the time grid t, 

delta_time. 

int alloc1D(double* &ptr, int M)  

 creates a 1 dimensional double array of length M returning 1 if successful. 

int alloc2D(double** &ptr, int M, int N)  

creates a 2 dimensional double array  M x N returning 1 if successful. 

int alloc3D(double** &ptr, int L, int M, int N)  

creates a 3 dimensional double array  L x M x N returning 1 if successful. 

int zero1D(double* &ptr, int M)  

zeros a 1 dimensional double array of length M returning 1 if successful. 

int zero2D(double** &ptr, int M, int N)  

zeros a 2 dimensional double array  M x N returning 1 if successful. 

int zero3D(double** &ptr, int L, int M, int N)   

zeros a 3 dimensional double array  L x M x N returning 1 if successful. 



double time_step(int ndata, double *timeh)  

opens a near zone point input field file, reads ndata sets of 7 floats (1 time, 3 E field and 3 H field 

components) creates the near zone time timeh which assumes that all the near zone point data uses the 

same time grid and assuming a uniform time grid, return the time step t, the difference between the 

second and first input time points. 

 

void time_grid(int ngrid, double dt, double **ehg)  

creates the reference time grid containing ngrid time points with a uniform time step of dt and places 

this in the global E and H array in the first location ehg[0][ia] where 0 ≤ ia ≤ ngrid-1. First reference time 

point is 0. 

void int_uw(int ngrid, int is, int ii, double *cellarea, double **ehg, double **uw, double cnst)  

calculates for Cartesian problems, the integral in Eqs. 4-5 not including the time derivative.  The number 

of reference time grid points ngrid.  The near zone point used in the integration is ii on the near zone 

surface is. The cell area is cellarea, the field data is stored in the ehg, the integrated value stored in  uw 

and cnst is the constant value outside of the integral in Eqs. 4-5 with R set to 1. 

void deriv_uw(int ngrid, double delta_t, double **uw)  

performs the time derivative found in Eqs. 4-5 on the first 6 columns of the uw , storing the results in the 

last 6 columns. The time array has ngrid time points with uniform time step delta_t. A central difference 

numerical derivative is used. 

void zero_ref_time_arrays(int ngrid, double **ehg, double **uw, double **utp)  

zeros the dynamically created ehg, uw and utp. While ehg is 7 by ngrid, the first column contains the 

reference time grid so this column is not zeroed. uw grid is 12  x ngrid and utp is 4 x ngrid. 

int get_npoints(int igeom, int is)  

returns the number of near zone data points in a near zone geometry file for surface is, assuming 4 

bytes per float. For a cylindrical geometry, there are two floats per near zone point (r, z) while for 

Cartesian there are 3 floats (x, y, z) per point. 

int get_ndata(int igeom, int n)  

returns the number of time points associated with the near zone field data, assuming that all the near 

zone points have the same number of time points. The function opens Fx1.flt containing n near zone 

points for Cartesian geometries. For cylindrical coordinates, adds 1 to the n number of near zone points 

contained in the field field Fz1.flt that is read. N2F assumes 4 bytes per float and that the field file 

contains n (or n+1) sets of 7 groups of floats (1 time, 3 E field, and 3 H field components) after counting 

the number of bytes in the file. 



void transform_uw(int icase, int ngrid,  double **uw, double **utp, double **spher) 

transforms the results of Eqs. 4-5 from Cartesian to spherical coordinates. Loops over the ngrid 

reference time data contained in the last 6 columns of uw transforming from Cartesian to spherical 

coordinates using the transformations stores in spher  for each icase far zone point. The result of this 

transformation is stored in utp (4 x ngrid). 

double read_data_xyz(int *npoints, double *xsurf, double *ysurf, double *zsurf) 

For each near zone Cartesian geometry input file, reads the npoints number of near zone geometry data 

points, loading the x component values into xsurf, the y component values into yzsurf, and the z 

component values into the zsurf. Returns distance from the origin to near zone point furthest from the 

origin, assuming that the near zone surface surrounds the origin. If this is not the case, then the near 

zone data should be translated to surround the origin before using N2F. 

double read_data_rz(int *npoints, double *xsurf, double *zsurf) 

For each near zone cylindrical geometry input file, reads the npoints number of near zone geometry 

data points, loading the r component values into xsurf, and the z component values into zsurf after 

transforming from node to cell centered values.   Returns distance from the origin to near zone point 

furthest from the origin, assuming that the near zone surface surrounds the origin. If this is not the case, 

then the near zone data should be translated to surround the origin before using N2F. 

void find_surf(int *npend, int *lsurf,  double *xsurf, double *ysurf, double *zsurf) 

For Cartesian problems, N2F assumes that the input geometry data is in meters. After summing the 

number of near zone geometry points over all 6 near zone surfaces, npend contains the index of the first 

near zone point on each of the 6 near zone surfaces. This functions loads into lsurf, the x locations of the 

two near zone y-z planes, the y locations of the two x-z planes and the z locations of the two x-y planes 

in centimeters using integers. N2F assumes that the near zone surfaces all lie on integer centimeter 

values. 

void find_timed_rz(int icase int *npoints,  double **xyz_f, double* tminmax, double r_f, double *xsurf, 

double *zsurf, int nphi, double *cosp, double *sinp, double **timedelay) 

finds the time delay = (𝑟̅′. 𝑟̂)/c  for small problems using cylindrical coordinates, including the replicated 

values, for the icase far zone point located at the xyz_f Cartesian coordinates. Besides loading the time 

delay value into timedelay, this also finds the minimum time delay, tminmax[0], and the maximum time 

delay, tminmax[1].  cosp and sinp contain nphi geometric factors used to transform the  replicated 

values from cylindrical to Cartesian coordinates. 

void find_timed_rz_mem(int icase int *npoints,  double **xyz_f, double* tminmax, double r_f, double 

*xsurf, double *zsurf, int nphi, double *cosp, double *sinp) 



finds the minimum and maximum time delay = (𝑟̅′. 𝑟̂)/c  for large problems using cylindrical coordinates, 

including the replicated values, for the icase far zone point located at the xyz_f Cartesian coordinates. 

The minimum time delay found is tminmax[0], and the maximum time delay found, tminmax[1].  cosp 

and sinp contain nphi geometric factors used to transform the  replicated values from cylindrical to 

Cartesian coordinates. 

double find_timed(double *rpime, double *rhat) 

returns the time delay R/c  −(𝑟̅′. 𝑟̂)/c used in Eqs. 4-5 where R is the radius of the far zone point. This is 

typically 1 meter, or twice the distance from the origin to the farthest near zone point, if this distance is 

greater than 1 meter. 

double timedelay_rz(int icase int ip, int icp,  double **xyz_f, double* tminmax, double r_f, double 

*xsurf, double *zsurf, double *cosp, double *sinp) 

for large cylindrical problems, returns the time delay for the icase far zone point, for the ip  replicated 

angle, for the icp near zone point, using the function find_timed and the cylindrical to Cartesian 

transformations cosp and sinp. 

void find_timed_xyz(int icase int *npoints,  double **xyz_f, double* tminmax, double r_f, double *xsurf, 

double *ysurf, double *zsurf,  double **timedelay) 

for small Cartesian problems, for the icase far zone point finds the time delay = (𝑟̅′. 𝑟̂)/c  located at the 

xyz_f Cartesian coordinates. Besides loading the time delay value into timedelay, this also finds the 

minimum time delay, tminmax[0], and the maximum time delay, tminmax[1].  

void find_edge(int *npoints,  double *xsurf, double *ysurf, double *zsurf)  

for Cartesian problems, finds the location of all the near zone surface edges and corners points in 

centimeters, assuming that these values should be integers, checking all the npoints on each near zone 

surface. 

void find_next_point(int *npoints,  double *xsurf, double *ysurf, double *zsurf)  

for Cartesian problems, finds on each of the 6 near zone surfaces the distance between the minimum 

and maximum points in each of the two dimensions to the adjacent point in centimeters, assuming that 

these values should be integers, checking all the npoints on each near zone surface. These values are 

used to calculate the cell areas that have surface edges and/or corners as boundaries. 

void cell_area(int *npoints,  int *lsurf, double *surfacearea, double *cellarea, double *xsurf, double 

*ysurf, double *zsurf)  

for Cartesian problems, calculates the near zone cells areas, looping over all of the npoints cells on each 

near zone surface. Also calculates the surface area of each of the 6 near zone surfaces. Uses integer 

arithmetic to avoid roundoff errors, assuming that the surfaces contain an integer number of square 

centimeters. Takes into account the possibility that corner and edge cell areas may have areas different 



than the surface interior cells. Each of the 6 near zone surfaces can have differing, but uniform grid 

spacing. lsurf contains the location (the third dimension) in integers of each of the 6 planes. 

double find_cell_data_rz(int *npoints,  double *xsurf, double *zsurf,  double *cellarea) 

for cylindrical problems, calculates and loads into cellarea, the cells areas of the near zone points. Also 

calculates the total surface area of each of the three (bottom, top, and side) of the near zone data 

cylinder summing over the npoints cell areas on each of the surfaces.  Checks the surface area of each of 

the three sides against the surface area using the cylinder dimensions. The locations of the near zone 

points are in xsurf and zsurf . This function returns the distance from the origin to the farthest near zone 

point. 

double find_cell_data_xyz(int *lsurf, int *npoints,  double *xsurf, double *ysurf, double *zsurf, double 

*surfacearea, double *cellarea) 

for Cartesian problems, using the six values associated with the third dimension in lsurf for the location 

of the 6 planes converted to integer centimeters that comprise the near zone geometry data stored in 

xsurf, ysurf, and zsurf, this function returns the distance from the origin to the farthest near zone point. 

This function also passes up the cell areas stored in cellarea and the surface areas in surfacearea. 

void print_cell_data(int *int_pnts, int *edge_pnts,  int *corner_pnts, double *surfacearea, int *lsurf) 

for Cartesian problems, for each of the six near zone surfaces, prints the number of interior points, edge 

points, corner points and the sum . This also prints the location of each of the six near zone planes 

contained in  lsurf  assuming these lie on integer number of centimeters, the surface areas of these 

planes, contained in surfacearea, the surface areas for these planes calculated from the dimensions of 

the planes, and the length of each of the two dimensions for each plane. These should be used to check 

that the Cartesian geometry data was correctly read. 

int ifound(int ic, int ia, int ndata, double delta_time, double** ehg, double *timen, double*** ehn, int 

loc) 

for small problems, for the ic near zone point, this returns the location in the input time grid which 

contains the reference time ehg[0][ia] for a given ia. The input time grid is timen and this routine returns 

I when timen[i] ≤ ehg[0][ia] < timen[i+1]. This function also linearly interpolates the E and H near zone 

data contained in ehn onto the ehg[0] reference grid at the ia grid point and loads these values into the 

next 6 columns of  ehg . This routine loops from the loc input time point to the ndata-1 time point. Since 

both time grids, the input and the reference are monotonically increasing keeping track of the location 

of the previously found time point returned by the previous call, stored in loc, this routine is faster, than 

starting at the first location. The time step delta_time is used in the linear interpolation. 

int ifoundmem(int ndata, double delta_time, double** ehg, double *timen, double*** ehn, int loc) 

for large problems this returns the location in the input time grid which contains the reference time 

ehg[0][ia] for a given ia. The input time grid is timen and this routine returns I when timen[i] ≤ ehg[0][ia] 



< timen[i+1]. This function also linearly interpolates the E and H near zone data contained in ehn onto 

the ehg[0] reference grid at the ia grid point and loads these values into the next 6 columns of ehg. This 

routine loops from the loc input time point to the ndata-1 time point. Since both time grids, the input 

and the reference, are monotonically increasing, keeping track of the location of the previously found 

time point returned by the previous call, stored in loc , is faster than starting at the first location. The 

time step delta_time is used in the linear interpolation. 

void read_data_eh_xyz(int *npoints,  int ndata, double *timeh, double ***ehn)  

for small Cartesian problems, this reads in the data from the npoints near zone points in each of the six 

surfaces, creates the near zone time grid timeh and loads  all for the E and H field data into the 

dynamically allocated ehn. 

void read_data_eh_rz(int *npoints,  int ndata, int nphi, double *cosp, double *sinp, double *timeh, 

double ***ehn)  

for small Cylindrical problems, reads in the npoints near zone data for each of the 3 near zone cylinder 

surfaces. Transforms from node to cell centered values, and converts these fields from cylindrical to 

Cartesian values, while creating the  replicated values. For the bottom and top of the near zone 

cylinders, the z component is not required to calculated J and M in Eq. 6, so these are set to zero. 

Temporary arrays eh and ehold, used to transform from node to cell centered values are created, used, 

and then deleted. 

void int_uw_ends(int ip, double *cosp, double *sinp, int ngrid, int is, int ic, double *cellarea, double 

**ehg, double **uw, double cnst)  

for cylindrical problems, calculates the integral in Eqs. 4 and 5 without the time derivative by summing 

over the cell areas of each ic cell point on the bottom (is = 0) and the top (is =1) of the near zone cylinder 

creating the appropriate cross product using the E and H data contained in the time interpolated to the 

reference grid data stored in the ehg and using the previously stored cell areas stored. Each replicated ip 

 data is used in the summation and the values are stored in the first six columns of  cosp and sinp are 

used in the transformation from cylindrical to Cartesian coordinates and cnst is the constant in Eqs 4-5 

with R set to 1. There are ngrid time points in each of the E and H field data. 

void int_uw_side(int ip, double *cosp, double *sinp, int ngrid, int is, int ic, double *cellarea, double 

**ehg, double **uw, double cnst)  

for cylindrical problems, calculates the integral in Eqs. 4 and 5 without the time derivative by summing 

over the cell areas of each ic cell point on the side of the near zone cylinder creating the appropriate 

cross product using the E and H data contained in the time interpolated to the reference grid data 

stored in ehg and using the cell areas previously stored. Each replicated ip  data is used in the 

summation and the values are stored in the first six columns of uw .  cosp and sinp are used in the 

transformation from cylindrical to Cartesian coordinates and cnst is the constant in Eqs 4-5 with R set to 

1. There are ngrid time points in each of the E and H field data. 



long int get_memsize(void) 

Creates a temporary file that contains the estimate of the amount of memory available for the problem 

obtained from the UNIX “free –b” command. This value is writtened to the temporary file named 

XXXXABCD.txt which is written in the execution directory. This large integer is then read, the temporary 

file deleted and the memory available in bytes returned as a long int. 


